
Raptor Engineering Test Solutions

Raptor Engineering Automated
Coreboot Test Stand (REACTSTM)

User's Guide
For System Configuration

and Setup

®                     

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

1

https://www.raptorengineering.com/


Table of Contents

Chapter 1  Introduction to the Automated Test Stand

Chapter 2  Basic Hardware Setup

Chapter 3  Software Configuration

Chapter 4  DUT Initial Setup

Chapter 5  Gerrit Integration

Chapter 6  Test Flow

Chapter 7  Troubleshooting

Appendix A  Required Hardware

Appendix B  DUT Signals and Wiring

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

2

https://www.raptorengineering.com/


Chapter 1  Introduction to the Automated Test Stand

The Raptor Engineering Automated Coreboot Test Stand (REACTSTM) is a combination of software 
and commercial off-the-shelf (COTS) hardware that, when combined, enable automated verification of 
coreboot functionality for a set of user-provided devices under test (DUTs).  The verification software 
supports testing of both mainline GIT and Gerrit proposed changes; each test source can be activated 
or deactivated as desired.  All tests run in parallel, with final verification being uploaded to Gerrit or the
board status repository/mailing list once all tests have completed and results are known.  The test 
stand supports automatic detection and recovery from DUT hardware failure; therefore, it is unlikely to 
generate spurious false negatives.

To achieve this functionality, several systems are utilized.  At the hardware level, a small, low-power, 
ARM-based single-board computer (SBC), such as a Raspberry Pi or a Beaglebone Black, is used to 
control device power, reset, and NVRAM clear for each DUT.  Optionally, a USB-based main power 
switch may be utilized to forcibly cycle power to each DUT; this is useful for laptops or other systems 
with an embedded controller (EC) that may become unresponsive to the normal GPIO-based 

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

3

Fig. 1.1 Simplified Diagram of Automated Test Stand

https://www.raptorengineering.com/


power/reset signals.

Each DUT boots Linux from the central SBC.  Linux is used for extended verification of DUT 
functionality; if Linux fails to boot, the DUT is immediately marked as failed.  The verification process is
controlled by the ARM SBC, and checks that:

1.) the DUT's CPU, RAM, and network adapter are functional
2.) coreboot's ACPI tables are valid
3.) DMI data is accessible
4.) cbmem is accessible and valid
5.) where enabled, nvram is accessible and operating normally

In the event of a DUT test failure, coreboot's fallback mechanism is utilized to boot a known-good 
romstage, ramstage, and payload.  Provided the DUT's hardware is functional, coreboot is recompiled 
with serial debug enabled, and a second attempt is made to test the coreboot image.  Log data is 
captured via the RS-232 serial connection during this second attempt and is stored for later upload 
and analysis.

The test process for QEMU is slightly different.  As QEMU does not support nvram, a basic test 
sequence is used which does not utilize or test the nvram.   Also, because QEMU requires a host 
computer, a dedicated server to which the test stand has ssh access is required.

All test control processes run on the SBC to save electrical power between test runs.  Each mainline 
test run is fired via cron; when fired, the mainline test request is appended to the existing test queue.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

4

https://www.raptorengineering.com/


Chapter 2  Basic Hardware Setup
 
All DUTs and their associated hardware / software connections must support the following tasks:
1.) Power on
2.) Forcibly power off
3.) Force fallback boot
4.) Flash new BIOS image / switch to new BIOS image

DUTs may optionally support the following tasks:
1.) Reset
2.) Clear NVRAM

For most physical devices, power on will be handled via a single GPIO line connected to the power 
switch.  Most desktop and server mainboards (excluding those with a BMC that shares the system 
Flash memory) will be able to use that same line to forcibly power off via the 4-second hard-off feature
built in to most SuperIO devices.  Devices that do not have an independent SuperIO or BMC device 
(such as some high-end servers and all laptops) will need to use an external AC power control device 
to forcibly remove power from the DUT.  QEMU support, instead, utilizes host secure shell access to 
start and stop the virtual machine(s) (VMs) as needed.

If the 4-second hard-off feature is used, it is recommended that the reset line be connected to a GPIO 
so that coreboot does not attempt to start during the force-off procedure.

For most physical devices, flashrom, running under Linux, will be used to flash a new BIOS image; 
however, for QEMU, the new BIOS image file will be uploaded to the appropriate location, and the 
QEMU start command will use the new BIOS image file when requested.

In order to support a wide variety of DUTs, a simple Python script 
(board_integration/target_control) is used to execute the specific commands required to 
perform the above listed functions.  This script calls functions in the user editable file 
/opt/raptor/dut_control.py; this file must contain, for each connected DUT, appropriate code 
for the following commands:

power_on_normal
power_on_fallback
force_power_off
resume
flash_rom

Each control function makes two parameters available to the Python code contained therein, 
target_number and target_hostname.  These parameters correspond to the DUT configuration 
variables set in the main reacts.conf file, and are intended to make DUT control easier for certain 
common tasks.

The provided sample control file includes sample code for both a server mainboard with independent 
SuperIO and for QEMU.  Recommended wiring, signal sequences, and timings for SuperIO-driven 
boards may be found in Appendix B.

Each DUT requires a dedicated RS-232 serial connection for capturing coreboot logs in the event that 
normal access mechanisms fail.  It is recommended that one specific model of USB to serial converter
be utilized, and that the requisite converters are attached to the control system through no more than 

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

5

https://www.raptorengineering.com/


one level of USB hub.  If these conditions are met, the REACTSTM system assigns each serial port a 
unique device node based on its physical location on the USB hub(s); these device nodes start with
/dev/ttyCBTGT and end with a unique two-digit number.

All DUTs are connected to an isolated, REACTSTM-internal network.  The Ethernet port on the DUT 
connects to the external, Internet-connected network, while the internal network is serviced by a 
dedicated USB to Gigabit Ethernet adapter.

Certain targets, for example those with SPI-based Flash devices, can use an external flash 
mechanism.  Each REACTSTM control system contains an SPI master that can be used to externally 
write firmware images to the SPI Flash memory of a single target.  This method of operation requires 
that the target fully release the SPI control signals before the external firmware write can proceed; the 
recommended wiring shown in Appendix B assumes the Flash device has been completely removed 
from the DUT and is now present on the interface board.  The recommended wiring also forcibly 
disconnects the associated signals from the target before attempting external SPI access.

On certain targets this ROM removal and forcible disconnection may not be necessary to support the 
external flash mechanism.  If forcible disconnection is not used, please note that some target board 
designs may require that the target be held in reset while target power is applied, while other targets 
may allow SPI access with target power removed entirely.  Please see Appendix B for further wiring 
information.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

6

https://www.raptorengineering.com/


Chapter 3  Software Configuration
 
3.1 Initial Setup and Login

After extracting the REACTSTM firmware image to your SD card and installing the firmware card into 
your SBC, you are ready to boot the system and run through initial setup and configuration tasks.

NOTE: When first starting your REACTSTM system, note that a configuration dialog may be displayed 
with several options including one to expand the root filesystem.  DO NOT choose this option as it will 
have an undefined / undesirable effect upon the REACTSTM system.

The default login for the SBC is:
username: pi
password: raspberry

All of the setup commands in this document assume that you are the root user on the REACTSTM 
system.  Therefore, you should switch to a root shell after login by executing:

sudo bash

Before using the REACTSTM, or if you need to restore the default DUT system files for any reason, 
execute the following command to unpack the DUT system files:

/coreboot/create_target_nfsroots initial

After unpacking the DUT system files, you will need to restart the REACTSTM service before executing 
any tests.

3.2 Configuration

The test stand configuration is stored in a single file on the control system 
(/opt/raptor/reacts.conf).  The file has the following syntax:

[global]
board_count = 2
usb_serial_vendor_id = 067b
usb_serial_product_id = 2303
external_dns_server = 8.8.8.8
external_ntp_server = 0.pool.ntp.org
automaster_interval = 1
test_result_base_url = https://myhost.com/coreboot/autotest/logs/
owner_email = <your Email address>
toolchain_update_command =

[smtp]
host = <your SMTP host>
user = <your SMTP username>
pass = <your SMTP password>
target = coreboot@coreboot.org
report_build_failures = 0

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

7

https://www.raptorengineering.com/
mailto:coreboot@coreboot.org
https://myhost.com/coreboot/autotest/logs/


min_interval = 86400

[gerrit]
port = 29418
host = review.coreboot.org
user = <gerrit user>
email = <test stand commit Email address>
author = Raptor Engineering Automated Coreboot Test Stand
pkey = /root/.ssh/id_rsa_gerrit
mode = reviewer
project = coreboot
branches = master

[board 0]
enabled = 1
extended_test = 1
video_test = 0
suspend_test = 0
external_flash = 0
external_flash_failsafe_rom =
friendly_name = ASUS KFSN4-DRE
serial_device = /dev/ttyCBTGT01
serial_remote_host =
serial_remote_pkey =
camera_device =
host_name = cb-test-tgt-1
boot_timeout = 300
build_timeout = 3600
video_decode_timeout = 10
architecture = x86_64
net_adapter_devname = eth0
kernel_boot_arguments =
ipxe_rom_vendor = 14e4
ipxe_rom_device = 1659
mac_address = 00:11:22:33:44:55

[board 1]
enabled = 1
extended_test = 0
video_test = 0
suspend_test = 0
external_flash = 0
external_flash_failsafe_rom =
friendly_name = QEMU x86_64 Q35
serial_device = /dev/ttyS11
serial_remote_host = <QEMU host>
serial_remote_pkey = <QEMU host SSH keyfile>
camera_device =
host_name = cb-test-tgt-2

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

8

https://www.raptorengineering.com/


boot_timeout = 300
build_timeout = 3600
video_decode_timeout = 10
architecture = x86_64
net_adapter_devname = eth0
kernel_boot_arguments =
ipxe_rom_vendor = 8086
ipxe_rom_device = 100e
mac_address = 80:80:80:80:80:ff

Three main section types are supported:

global
Contains global information such as the total DUT count, USB to serial adapter type, and 
external DNS / NTP server addresses.  automaster_interval specifies the minimum delay 
between test runs against GIT master in hours; setting this to zero will disable testing of the 
GIT master branch.

smtp
Configures the external SMTP server used to report test failures.  To disable external Email 
error reporting, set the host field to an empty string.  min_interval sets the minimum 
number of seconds that must elapse before another failure message is sent.

gerrit
Stores host, port, project, and authentication information for the master Gerrit server.  The 
email and author fields are not used to authenticate to Gerrit; they are only used to create 
author information for the board-status repository.  The REACTS can be also configured to test
multiple branches; to use this feature, simply provide a comma-separated list of branches to 
test in the branches variable.

board <n>
Stores DUT-specific information, including the serial device to which the current DUT is 
connected.  If the current DUT requires any Linux kernel options to boot correctly, these 
options should be provided in the kernel_boot_arguments field.  Similarly, if the network 
adapter connecting the DUT to the REACTS™ control system is not the default eth0 under a 
Linux kernel, the correct network adapter device name should be provided in the 
net_adapter_devname field.

The gerrit configuration section should not need to be modified except to enter your Gerrit bot account 
username, key file location, and to set the testing mode.  Two testing modes are supported, 
reviewer and all.  Reviewer mode only tests changesets for which the REACTSTM has been added
as a reviewer, while All mode tests all changesets that are uploaded to or modified on Gerrit.

The board_count variable in the global section sets the number of DUTs connected to the control 
system; there must be an identical number of monotonically incrementing [board n] sections provided 
within the configuration file.

The REACTSTM uses a prebuilt toolchain to build test images in order to provide usable testing rates.  
When changes are made to the coreboot sources that alter the toolchain subcomponent versions, 
builds may fail due to the stale, cached toolchain binaries.  The REACTSTM detects this condition in the
regularly scheduled automaster builds, and will subsequently execute any command provided in the 

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

9

https://www.raptorengineering.com/


toolchain_update_command configuration directive.  If no command is present, or if the provided 
command exits with a non-zero return code, the REACTS will leave the toolchain failure flag set and 
abort all subsequent tests pending a required manual toolchain update.  Licensed REACTSTM users 
with an active support contract have access to signed build images generated by Raptor Engineering; 
for these users, the REACTSTM will automatically download and use the latest toolchain image on 
detection of a toolchain failure.

Each board can be disabled manually by setting the enabled field to 0.  When a board is disabled, it is 
not included in the autotest results.  Extended test is appropriate for most devices and should be set 
unless nvram support is not available for the selected DUT.  The friendly_name field will be used to 
label the DUT in all public autotest result entries, including Gerrit verification posts.

Each DUT must have its architecture, serial_device, boot_timeout, ipxe_rom_*, and mac_address
variables set appropriately.  For most DUTs, a boot_timeout of 300 seconds is adequate; however, on 
slow DUTs or server boards with large amounts of ECC RAM, this timeout may need to be increased.  
Any DUT that has not fully booted into Linux before the timeout expires will be assumed to have failed 
verification.

After editing the configuration file, depending on which settings have been changed, you may need to 
restart the REACTSTM service before the new settings will take effect.  In general, settings in the 
board sections do not require a restart, while changes in the global and gerrit sections do 
require a restart.  However, if any board architecture settings are changed you will need to update
the boot kernel images and DUT filesystems by executing /coreboot/create_target_nfsroots.

The REACTSTM can make use of an external NFS server via the optional external_nfs_server 
directive, provided that certain server requirements are met.  If you require this option for your test 
environment, please contact Raptor Engineering at support@raptorengineering.com for more details.

3.3 Remote Logging

Certain systems, such as QEMU and various laptops, do not have a physical serial port available for 
capturing debug logs.  Many of these systems provide an alternate means for log reception, for 
example USB EHCI debug via a host system.  The REACTSTM can capture debug logs from a device 
node on a remote system; to use this feature the REACTSTM must have the ability to use an SSH 
private key to log in to the debug host system.  Remote log capture is controlled by the following two 
lines in the board <n> section of the configuration file:

serial_remote_host
serial_remote_pkey

If serial_remote_host is not blank, the REACTSTM will attempt to log in to that system as root with
the SSH keyfile specified in serial_remote_pkey, and capture logging information from the device 
node specified in serial_device.  No setup is performed on the device node; debug information is 
expected to be made available from the device node via a simple cat command.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

10

mailto:support@raptorengineering.com
https://www.raptorengineering.com/


3.4 PCI Device Check

Each DUT can be scanned to verify that all specified PCI devices have been properly enumerated 
after boot has completed.  To use this option, simply create a file in /opt/raptor/ following this 
naming convention:
reacts_board_<board_id>.pci

In the .pci file for each DUT, list all PCI vendor and device IDs for which you wish to verify presence. 
Order does not matter, but if a device is listed more than once the REACTSTM will test for the presence
of the total number of devices listed.  For instance, a file named reacts_board_0.pci and 
containing the following entries will test for the presence of two Broadcom® NIC devices and an XGI® 
VolariTM device on DUT 0:

18ca 0020
14e4 1659
14e4 1659

If a device listed in the assoicated .pci file is not present, the REACTSTM will report a PCI device 
enumeration failure.  If devices are present that are not listed in the associated .pci file, the 
REACTSTM will ignore them and proceed with the rest of the testing sequence.

3.5 Video Usability Test

The REACTSTM supports validation of display device functionality for each DUT.  To use this feature, 
you will need a separate USB webcam attached to the REACTSTM control system for each DUT with 
enabled display validation.  Ensure that each webcam can see the entire display of the associated 
DUT and that the screen is in focus, for example by using zbarcam in graphical mode.  Display 
validation is controlled by the following three lines in the board <n> section of the configuration file:

video_test
camera_device
video_decode_timeout

If video_test is not 0, the REACTSTM will attempt to use the video device specified in 
camera_device to verify the functionality of the DUT display.  The REACTSTM will wait up to 
video_decode_timeout seconds after DUT boot for display validation to succeed.  If the display 
device attached to the DUT has an unusually long warm up period this value may need to be 
increased, otherwise the default of 10 seconds should be adequate.

If the webcam associated with a DUT is subsequently moved so that it cannot see the entire display of
the DUT, or so that the focus is insufficient to obtain a clear picture, display validation will fail.  As such,
it is important to ensure that the webcam is affixed to a reasonably immobile object on order to avoid 
false negative test results.

3.6 Suspend Operation Test

Correct operation of S3 (Suspend to RAM) can be tested by the REACTS™, provided that hardware 
and firmware support for the S3 mode exists on the DUT, and that the Linux kernel is capable of 
utilizing this support.  To enable testing of the DUT's S3 suspend mode, first ensure that resume 
support for your DUT has been added to /opt/raptor/dut_control.py, then enable testing via 

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

11

https://www.raptorengineering.com/


the suspend_test option in the board <n> section of the configuration file:

suspend_test = 1

3.7 External SPI Firmware Write

The REACTSTM natively supports writing firmware images directly to a single DUT over SPI.  Other 
protocols and additional SPI DUTs are also supported provided that compatible external hardware 
adapter(s) are attached to the REACTSTM control system.  To enable the external firmware write 
feature, ensure that the physical wiring to the DUT's SPI Flash ROM is completed per the example in 
Appendix B, then enable external flash write via these two lines in the board <n> section of the 
configuration file:

external_flash = 1
external_flash_failsafe_rom = /coreboot/target_files/fallback_roms/<x>.rom

Note that you will need to transfer the built fallback ROM from the DUT to the location specified in 
external_flash_failsafe_rom prior to enabling the external firmware flash feature.  Please see 
Chapter 4 for more information on building the fallback ROM image.

3.8 DUT Test Failure Reporting

By default, the REACTSTM system reports any test failures to the coreboot mailing list via the 
report_board_test_failure script, which uses the mutt program to assemble and send a 
failure message.  The user-editable failure message body is stored in 
/opt/raptor/reacts_failure_message_body.inc.  If transmission of failure messages to the 
coreboot mailing list is desired, you will need to configure the SMTP server via the smtp section in the 
REACTSTM configuration file, and subscribe the Email address used to report errors to the coreboot 
mailing list.

3.9 REACTSTM Service Control

The REACTSTM service may be restarted via:

/etc/init.d/reacts restart

It is not recommended to restart the REACTSTM service while any DUTs are booted and active.

3.10 DUT Malware Purge / Redeployment

Due to the high privilege level of the software and firmware being tested on the DUTs, there is a small 
possibility that a malicious changeset could install malware or other type of unwanted persistent 
software on one or more DUTs.  While this would not affect the REACTSTM control system or QEMU 
host machine by design, it is not desireable to leave any such malware installed on the DUTs as they 
have some limited Internet connectivity and thus could be used for nefarious purposes.
To mitigate this risk, a new script has been introduced in REACTSTM system firmware version 1.2.0, 
/coreboot/redeploy_target_nfsroots.  When executed, this script will wait for the current test
cycle to complete (if any is active), then delete and redeploy the DUT nfsroots from the known-good 
tarballs present on the REACTSTM control system.  All coreboot configuration data and fallback ROM 
images from the DUT are preserved.  During execution of the cleaning script, all testing services are 
locked out to prevent spurious failures; when cleaning is complete queued tests will resume.  As the 

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

12

https://www.raptorengineering.com/


speed of the cleaning operation depends strongly on the performance of the disk subsystem on which 
the nfsroots are stored, it is left to the user to decide how often this cleaning operation should be run.

3.11 DUT Configuration Backup / Restore

If for any reason the REACTSTM control system needs to be reimaged, it may save considerable setup 
time to backup and restore the DUT configuration files.  Two scripts have been provided for this 
purpose, back_up_dut_configuration and restore_dut_configuration.  Both scripts take 
a backup file name as the only argument; after creating the DUT backup file, the following files should 
be transferred off of the REACTSTM control system onto an external storage device for restoration after
reimaging has completed:

• The DUT backup file created via /coreboot/back_up_dut_configuration
• /opt/raptor/reacts.conf
• /opt/raptor/dut_control.py

All of the above mentioned  files should be restored to the REACTSTM control system after reimaging, 
and /coreboot/restore_dut_configuration should be run with the DUT backup file created 
earlier to fully restore the DUT configuration files to the new system image.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

13

https://www.raptorengineering.com/


Chapter 4  DUT Initial Setup

Each DUT requires a small amount of setup before it can be enabled.  The typical setup process 
follows:

Install coreboot

Follow the board-specific instructions from the coreboot project to create a coreboot image with 
SeaBIOS payload, then flash it to your device.  This coreboot image should include iPXE support for 
your network adapter.  Verify that coreboot functions properly on your device before proceeding.

Connect the DUT

Physically connect the DUT to the REACTSTM test system.  At minimum, you will need a network 
connection to the REACTSTM internal network, power control signals from the control system to the 
DUT (see Appendix B for recommended hookups), and a RS-232 null-modem serial connection 
between the DUT and the control system.  If a laptop or other machine with an embedded controller 
(EC) is being tested, you likely will need to connect the DUT's power suppy to a REACTSTM-controlled 
mains power switch in order to ensure the target is powered down when required by the control 
software.

Add the DUT to the configuration file

Add or modify a board entry in the REACTSTM configuration file for the new DUT.  Verify that the MAC 
address is set correctly, and that the new DUT is disabled (enable = 0).  Also ensure the DUT is 
connected to one of the serial ports on the control system, and that the device node for that serial port 
is set in the new DUT's board configuration section.

After modifying the REACTSTM configuration file, update the boot kernel images and DUT filesystems, 
then restart the REACTSTM service:

/coreboot/create_target_nfsroots
/etc/init.d/reacts restart

Set up coreboot

Connect the DUT to the internal REACTSTM network and boot it via iPXE.  From the REACTSTM control
system, execute the following command:

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no root@cb-test-tgt-0<n>

where <n> is the board number previously configured in reacts.conf.

Once you have access to the new DUT, enter the following command:

/coreboot/build_coreboot_test_image menuconfig

You should now see the coreboot menuconfig screen.  Configure coreboot for this DUT, then exit.  
Recommended settings are to enable CMOS support, switch to the normal bootblock (if possible), and
enable a SPEW debug log level.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

14

https://www.raptorengineering.com/
mailto:root@cb-test-tgt-0


Create the fallback ROM image

After you have exited the coreboot menuconfig system, execute the following command:

/coreboot/build_coreboot_test_image fallback <manufacturer id> <device id>

where <manufacturer id> and <device id> are the Vendor ID and Product ID of your networking 
device, respectively.

Congratulations!  The DUT is now configured for automatic test.  Power off the DUT via

init 0

QEMU setup

QEMU testing relies on a dual-ported QEMU host machine, with one network port physically attached 
to the internal test network and the other network port attached to the same external LAN as the 
REACTSTM control system.  The qemu guest needs to have the internal test network port attached, 
and the REACTSTM control system needs to have ssh access to the QEMU host over the external LAN
in order to start and stop QEMU virtual machines.  The user is responsible for configuring the QEMU 
host using bridged networking between the internal test network interface and any QEMU DUT virtual 
machines contained on the host.

Due to the lack of a BIOS update utility and physical serial port, QEMU DUTs require additional setup 
to function correctly.  You may safely skip this step for non-QEMU DUTs.  The goal of this process is to
allow the QEMU DUT to make test ROMs available to the QEMU host, even after the QEMU DUT has 
been powered down, and to make a virtual serial cable available between the QEMU DUT and host.

First, set up an NFS export (/coreboot/roms) on the QEMU host.  Allow the QEMU DUT to mount 
this directory read/write.  Next, boot the QEMU DUT and log in from the REACTS control system via 
the previously given ssh command.  Then, open /etc/fstab on the QEMU DUT for editing and 
append the following line:

cb-test-qemu-host:/coreboot/roms /coreboot/roms nfs rw 0 0

Adjust the content if necessary to match your configuration, then save the file and exit the editor.

Before your QEMU DUT can be used, a virtual serial cable must be provided between the DUT and 
the host machine so that debugging information can be captured and reported if necessary.  An 
example setup script has been provided in the following location:

/coreboot/qemu_host_files/scripts/start_serial_bridge

Copy the referenced script to the QEMU host and modify as needed, then configure the QEMU host to
run that script once on every boot.

Finally, power off the DUT via

init 0

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

15

https://www.raptorengineering.com/


Enable automatic testing of the DUT

Set enable = 1 in the main REACTSTM configuration file to enable automatic testing.  You do not 
need to restart the REACTSTM service for this change to take effect.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

16

https://www.raptorengineering.com/


Chapter 5  Gerrit Integration

The REACTSTM system supports automatic testing of proposed changsets uploaded to Gerrit.  To use 
this feature, you will need a Gerrit bot account and valid SSH key.

To activate, first upload your Gerrit bot SSH key to the test control system – for example, to 
/root/.ssh/id_rsa_gerrit.  Next, configure the gerrit section in the REACTSTM configuration 
file with your bot account information and key file location.  Finally, restart the REACTSTM service.

If you wish to make the test logs available to the general public, you will need to set up a Web server 
that publishes the contents of the /coreboot_build_logs directory; then, set 
test_result_base_url to the base URL of that Web server.  For example, if you make the 
coreboot test log directory available at http://myhost.com/coreboot, you will need to set 
test_result_base_url = http://myhost.com/coreboot.

To request testing of a changeset on Gerrit, add the aforementioned Gerrit bot account as a reviewer 
to that changeset.  The REACTSTM system automatically tests the active changeset when added as a 
reviewer – and continues to test any changesets uploaded thereafter, posting test results to that Gerrit 
changeset.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

17

https://www.raptorengineering.com/
http://myhost.com/coreboot


Chapter 6  Test Flow

This section details the overall flow of a test, from remote change through local DUT boot and 
verification, to upload of test results to the remote server.

All test requests are queued inside the monitor_gerrit process.  Two test request types are 
currently supported: Gerrit-initiated requests, and automaster requests.  Automaster requests are fired
via a standard cron job, and, unlike Gerrit requests, do not stack up in the queue.  Gerrit requests are 
initiated when the Gerrit bot user associated with the test stand is added as a reviewer to a changeset,
or when a re-review request is sent from a changeset on which the same Gerrit bot user already is set 
as a reviewer.

When a test request reaches the head of the queue, execute_test_on_target is called with 
appropriate command line parameters.  This, in turn, calls board_integration/target_control 
with the appropriate parameters to power on the DUT(s) in fallback mode.  As soon as each DUT is 
booted, /coreboot/build_coreboot_test_image is executed on that DUT; this script is 
responsible for fetching the specified changes from GIT and building the new test ROM image.

As soon as a DUT has finished building the test ROM image, 
board_integration/target_control is called again to flash the test image to the DUT's ROM.  
After the flash process completes, the DUT is fully powered down and rebooted once to ensure that 
faulty or changed NVRAM settings do not cause a false negative result.  After power down, the 
corresponding serial port is opened and the DUT is powered on for testing.  If the DUT boots into 
Linux before the prescribed timeout period has elapsed, several tests are executed within the Linux 
environment to check for the presence and correctness of cbmem data, nvram data, and other BIOS-
provided or BIOS-controlled data structures.  Provided all these tests are successful, the DUT is again 
powered down and rebooted for final analysis.  If any of the various checks fail, including if the DUT 
does not boot, the DUT is forcibly powered off and rebooted in fallback mode.  Once the DUT boots 
into fallback mode, a second build sequence is executed, this time with the serial console enabled.  
After this new debugging image has been flashed, the previous test sequence is repeated and the 
results are stored.

When running in automaster mode, each DUT independently either uploads a board-status report via 
the /coreboot/upload_board_status_reports script, or the test thread reports failure to the 
mailing list via  the report_board_test_failure script.  In Gerrit mode the main test script waits 
for all DUTs to finish testing, then agglomerates all results into a final verdict.  In all cases, the RS-232 
output from failed builds is saved to the /coreboot_build_logs directory on the REACTSTM control
system.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

18

https://www.raptorengineering.com/


Chapter 7  Troubleshooting

Symptom: The REACTSTM system consistently marks a single DUT as failed.

Resolution: There are several potential causes for this failure.  First and foremost, verify that coreboot 
is fully functional on the DUT by checking for bootability, verifying full cbmem functionality, and 
verifying that nvram works.  If the target boots but cbmem and/or nvramtool do not function – and 
cannot be repaired – you may want to set the extended_test key for that board to 0 in order to to 
bypass all checks except basic bootability.

Symptom: The REACTSTM system is unable to test any changes, and reports a GIT SCM failure.

Resolution: The most likely causes of this failure are a lack of network connectivity and an invalid 
REACTSTM Gerrit configuration.  Try pinging the host specified in the gerrit configuration section to 
check for network connectivity.  If that works, verify that the Gerrit username and SSH key are valid, 
that the SSH key has been installed into the specified location on the REACTSTM system, and that the 
correct Gerrit project name has been specified.

Symptom: DUTs randomly fail to pass testing, sometimes with strange symptoms, such as all 
extended tests failing or the resultant debug boot functioning normally.

Resolution: This may be caused by a timeout that has been set too low.  Try increasing the timeout 
value to see if the system becomes stable.  The timeout is a balance between decreased overall test 
time in the event of boot failure and false positives in the case of a transient slowdown (e.g. increased 
network traffic).

If you are encountering a technical difficulty that is not described here, please contact us at 
support@raptorengineering.com with a detailed description of your problem.  We will do our best to 
assist with the issue.  Entities holding a support contract will receive a response within one or two 
business days, with same day response turnaround being typical.

There are several log files generated by the REACTSTM system (/var/log/coreboot_gerrit*); 
these files may contain valuable information that could aid in troubleshooting.  We ask that any 
requests for assistance contain a copy of these log files for further analysis.

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

19

mailto:support@raptorengineering.com
https://www.raptorengineering.com/


Appendix A  Required Hardware

The following hardware is recommended for use in the REACTSTM system:

1   Raspberry Pi v2 (mandatory)
1   AX88178-based USB to Gigabit Ethernet adapter
1   5-port or 8-port Gigabit Ethernet switch (adjust according to the number of DUTs expected)
2   EnerGenie EG-PM2 programmable power strips (optional)
2   4-port USB hubs
5   FTDI USB to RS-232 serial adapters (adjust according to the number of DUTs expected)

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

20

https://www.raptorengineering.com/


Appendix B  DUT Signals and Wiring

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

21

https://www.raptorengineering.com/


Recommended normal power-up sequence for Winbond/Nuvoton SuperIO devices:

power# hhflllllllllllllllllllllllrhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
   <ttttttt 1 second ttttttt>

reset# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

nvramclr# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

recovery# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Recommended fallback power-up sequence for Winbond/Nuvoton SuperIO devices:

power# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhflllllllllllllllllrhhhhhhhhhhhhhh
                              <tttt 1 second tttt>

reset# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

nvramclr# hhflllllllllllllllllrhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
   <tttt 1 second tttt>

recovery# hhflllllllllllllllllllllllllllllllllllllllllllllllllllllllllrh

Recommended forcible power-down sequence for Winbond/Nuvoton SuperIO devices:

power# hhflllllllllllllllllllllllllllllllllllllllllllllllllllllllllrh
   <ttttttttttttttttttttttt 4 seconds tttttttttttttttttttttttt>

reset# hhflllllllllllllllllllllllllllllllllllllllllllllllllllllllllrh

nvramclr# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

recovery# hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Recommended control wiring for a single SuperIO-based mainboard:

Recommended external SPI firmware connection method for targets with DIP-8 / SIP-8 Flash devices:

© 2015 - 2017 Raptor Engineering, LLC REACTSTM User's Guide Revision 1.4.1
All Rights Reserved https://www.raptorengineering.com

22

https://www.raptorengineering.com/

